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Abstract

The application of graded mesh and multigrid techniques to the modeling of microwave components in 3-dimensions
with the TLM method are discussed. Comparisons are made for graded mesh and multigrid interfaces in a waveguide, for a
non-touching axial strip placed in awaveguide, and for a microstrip impedance step. The issues of appropriate excitation and
absorbing boundary conditions are addressed. It is shown that multigrid techniques provide an effective means of reducing
the mesh resolution away from discontinuities.

Introduction

The transmission-line matrix (TLM) method of numerical electromagnetic analysis with the symmetrical condensed
node (SCN) [1] iswell established. To increase the flexibility in which a problem can be meshed, two main techniques have
been proposed: graded mesh and multigrid mesh. In this paper, graded and multigrid techniques will be applied to simple
waveguide and microstrip examples, and the relative efficiency and accuracy will be compared.

Graded Mesh

A graded mesh is defined by the cell dimensions along each of the coordinate axes. A feature of graded meshes is that
fine mesh regions cannot be compl etely isolated from the rest of the mesh. In the original approach, the link-line impedances
were kept constant and stubs were added at the nodes (the stub-loaded node). However, if the nodes are far from being cubic,
this imposes an unreasonable limit on the timestep. The hybrid node [2] offers a more favorable limit on the timestep and
also has superior dispersion characteristics.

Multigrid Schemes

Multigrid techniques allow connection between two disjoint meshes. These meshes can be uniform (with cubic or cuboid
nodes) or they can be graded. At least three multigrid schemes have been proposed and these will be referred to as methods
A, B and C in this paper.

In method A, the average field is maintained across the fine/coarse mesh interface (this is equivalent to conserving
charge) and the coarse-. fine and fine-. coarse conversions are dealt with separately [3]. The coarse and fine mesh timesteps
can be equal but it is more useful to run the fine mesh with a smaller timestep. For example, if both meshes are uniform and
cubic, the standard 12-port node can be used for both meshes and each mesh can be run with the maximum timestep of Al/
2c. In situations where the fine and coarse mesh timesteps are not equal, it is essential that the calculation is ordered such
that an axial TEM wave will propagate perfectly. The standard 12-port node is the most efficient SCN formulation and it is
also the most accurate for axial propagation. If anode is used in which the link-line impedance can vary over the interface,
then appropriate reflection and transmission coefficients may need to be applied before the conversion takes place [4]. For
the hybrid node, this must be done if the ratio of the timestep and the normal node dimension are not the same in both the
fine and coarse meshes. The main disadvantage of method A isthat there is aloss of energy in the fine- coarse conversion.

In method B, the fine/coarse mesh interface is implemented as an electrical connection [5]. Energy is conserved in the
conversion procedure but it does require that both fine and coarse meshes are run with the same timestep. This means that
the standard 12-port node cannot be used for the coarse mesh (e.g. stub-loaded or hybrid nodes must be used), resulting in
longer run-times and a higher memory requirement. The fine- coarse conversion is identical to that in method A. For the
coarse- fine conversion, for the case when the incident fine mesh pulses are not equal, the extra degrees of freedom needed



to enforce both charge and energy conservation, are acommodated by modifying the refleded fine mesh pulses. Thereisa
choicein whether to conned the fine mesh link-lines by row first or by column first, although in practicethere gopearsto be
little difference between the two.

In method C, the interface is implemented by fitting a two-dimensional spline to the pulses incident upon the interface
and then cdculating the transmitted pulses by interpolation [6]. This method allows greaer flexibility in both spatial and
temporal discretizaion, for example, a non-integer number of link-lines from the fine mesh can be mnneded to a non-
integer number of link-lines from the marse mesh. However, the procedure does nat enforce mnservation o energy and, in
contrast to method A, there can be again of energy, aswell asaloss Thereis also the problem of trying to fit a splinein the
presence of spurious modes with a high spatial frequency. Such modes can be predicted theoreticdly [7] and, in pradice are
often observed close to excitation padnts. Spurious modes do not present a problem to methods A and B, and since these
methods usually provide adequate options for meshing, they will be cmncentrated on in this paper.

M eshing M ethodology

Both graded mesh and multigrid methods have been used as mesh refinement techniques, so that a uniform fine mesh
does not have to be used throughout the entire problem space However, for certain dscontinuities, mesh refinement may not
give asignificant improvement. Normally, TLM is expeded to be second order acarate but in the presence of, for example,
a knife-edge discontinuity, the acarracy is reduced to first order [8,9]. When such discontinuities are present, the only
pradicd solution is to make use of locd mesh modificaion techniques. These techniques can be based on analyticd
formulations [10], or on corredion fadors obtained from an optimization procedure [11]. Speda nodes are dso avail able
for wires and slots[12,13], where the feaures are much smaller than the cdl size

Mesh grading can be used to fit the mesh to the exad physicd dimensions of the structure under study. However, since
the cdl dimensions must be mnstant along ead dof the aes, this means that unless the feaures of the structure ae digned,
then small cdls must be introduced. This will have adetrimenta affed on the timestep. Alternatively, the size of cdls
adjacent to short or open-circuit boundaries can be varied continuoudly by altering the link-line impedance [14]. For the
SCN, the am length can be reduced to ane half of the standard value (the presence of the side ams means that the length
cannot be reduced below this), or the length can be increased arbitrarily. This procedure works well for normal incidence.

The most appropriate use of multigrid techniques is to reduce the resol ution away from discontinuiti es. For example, by
increasing the distance to absorbing boundary conditions (ABC's), the dfed of higher order modes is reduced and better
absorptionis obtained. Multigridding can also be used to conned disjoint graded meshes for structures with feaures which
arenct aligned.

I nter face Between Two M eshesin a Waveguide

Following the example of Wlodarczyk [5], the acairacy of multigrid schemes can be assessed by cdculating the S
parameters of the interfacein a sedion of waveguide. The ends of the waveguides can be terminated with modal diakoptic
boundaries [15,16]. For auniform mesh, the refledion from these ABC'sis close to the limit of numericd predsion (-120dB
single predasion, -300dB double predsion) and so they will nat distort the results. There ae no resonance éements present,
so the simulation will be short and the discrete Green's function dces not need to be truncated. To avoid problems with
sampling the field at a single point in meshes of different resolution, a modal decompasition is performed over the aoss
sedion to extrad the mode amplitude.

Fig. 1 shows the refledion and transmission coefficients for multigrid interfaces between a 16x8 coarse mesh and a
32x16 fine mesh, for methods A and B. The nodes are aubic in all cases. Two cases are cnsidered for method B: stub-loaded
coarse mesh and hybrid node wmarse mesh. The standard 12-port node is used for al other meshes. For method B, the
reflection coefficients are the same for both coarse- fine and fine- coarse wnversions. Also, the transmission coefficients
are symmetricd about unity. Smaller refledions are obtained with the hybrid nade warse mesh. For method A, the
fine- coarse mnversion works better than the marse-fine mnversion. The refledion coefficient for the fine- coarse
conversion is better than for method B. Both transmission coefficients are much lessfrequency dispersive, particularly the
fine- coarse mnversion. This means that if it is only the fine- coarse mnversion which is of interest (e.g. the region o
interest is contained in the fine mesh and the warse meshisonly used to increase the distanceto ABC's), method A can give
superior results. However, if the system contains resonant elements, and if the oscillation occurs aaoss the interface then
the loss of energy will be a problem and method B will be more gopropriate.

The magnitudes of the refledion and transmisson coefficientsfor amultigrid interface ae similar to those observed with
a straightforward graded mesh interface Fig. 2 shows curves for an interfacebetween cubic nodes and nodes with normal



40 1.010 L B,stub-loaded,coarse - fine~
A coarsefine B,hybrid,coarse fine
3 % 1005
= @ B.sub-loaded | 2
S B,hybrid T
T 2 100} _ ]
8 -8 '?; A fine- coarse
é £ A coarse fine
3 | S 09% |
E» -100 | A fine- coarse = o
B,hybrid,fine- coarse
0.99 | )
B,stub-loaded,fine - coarse
-120 : . . . . . . . .
1.0 20 3.0 10 2.0 3.0
Frequency (f/fc) Frequency (f/fc)

Fig. 1 — Refledion and transmission coefficients for multigrid interfacebetween 16x8 coarse mesh and 3216 fine mesh
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dimensions of Al/2 and 3Al/4, modeled with the hybrid node. The aurves are functions only of the initial and final node
dimensions; the same results are obtained if the node dimensions are changed in one step or if they are changed gradually.

The performance of multigrid interfacesimproves as the mesh resolution isincreased. Fig. 3isthe same as Fig. 1 except
that both coarse and fine meshes are doubled in resolution. The trends observed are the same & in the previous case.

Non-touching Axial Strip in a Waveguide

A simple three-dimensional discontinuity consisting of a nontouching axia strip placed in a waveguide, as shown in
Fig. 4, has been modeled. The dimensions of the strip are such that for Al=0.1185mm, the strip is exadly 3x16 nades and the
waveguide aoss-sedion is 60x30 nodes. Symmetry can be exploited about the strip. The size of this strip presents a
challenge to the modeler: if the strip was very small compared to the mesh size a spedal node (similar to a wire node)
would have to be used; if the strip was much larger, then a straightforward TLM description would probably be sufficient.
Here, an edge rredion is applied around the strip to reducethe marsenesserror [11]. The amrredion factors were obtained
from a systematic optimization for a single finned waveguide, and if the crred result is obtained for this structure, it will
give ameasure of the generality of the method and of the arredion fadors.

To allow comparison between different meshing schemes, the strip is described in a uniform fine mesh 13 nodes in
length, as sown in Fig. 5. The output planes are taken threenodes from the edge of the strip (the edge corredion extends
over nodes 5 and 9). Sincethe output planes are dose to the strip, amodal decompaosition must be performed over the aoss
sedion to extrad the dominant mode amplitude. This is done from the Hz field component. In the general case, where it is
necessary to distinguish between TE and TM modes of the same order, it is more mnvenient to work with Hz and Ez rather
than with the voltage pulses. Thisisin contrast to the usual implementation of modal diakoptic ABC's, which work diredly
on the voltage pulses [16]. For the excitation, Ey is introduced with the spatial distribution of the dominant mode, on the
same plane & the first port output. Spedal care must be taken when caculating the field at the same point as the excitation
sincethe usual condition, that the incident charge before scattering is the same as the refleded charge, does nat hold. In this
case, Hz must be caculated from bath incident and refleded voltage pulses. The pulses needed to produce the required
excitation waveform are obtained from areference structure cntaining hard voltage sources[17]. Thisreferencestructureis
only asingle cdl inlength and is terminated with dominant mode diakoptic ABC's.

Given that the strip is adequately described in the fine mesh, the main dedsion to be made is on the waveguide
terminations. Some of the available options are shown in Fig. 6. The waveguide can be terminated close to the strip, which
requires an ABC that will adequately absorb higher order modes. The termination can be moved a short distance away, to
reduce the number of modes to be @sorbed, or, the termination can be moved far away, so that only the dominant mode
needs to be mnsidered. Single mode diakoptic ABC's and one-way equation ABC's [18] can be used in the last case. Multi-
mode diakoptic ABC's can be used in the other cases, provided the modes are known in advance The Berenger perfedly
matched layer (PML) is also a possibility [19,20], athough the PML must be of a cetain thickness, which increases the
computation effort. Multigridding provides an efficient way to dstance ABC's by adding coarse mesh regions.

The results obtained with a uniform fine mesh (30x30x96 nodes) and dominant mode diakoptic ABC's are shown in Fig.
7, along with independent results [21,22]. Thereis very good agreement considering the small number of nodes describing
the strip. The dfed of adding a carse mesh to the original 13 node fine mesh is siown in Fig. 8, for lengths of 20 and 5
coarse mesh nodes, and for no coarse mesh, again for dominant mode ABC's. The 20 node aarse mesh gives results almost
identicd to the uniform fine mesh but with much reduced computing resources. To provide good terminations with multi-
mode ABC’s, modes up to 5,4 must be mnsidered with no coarse mesh, and modes up to 3,2 with a 5 node marse mesh.
Pladng modal diakoptic boundaries in a marse mesh has the alvantage that the modal decomposition can be performed
more dficiently becaise there ae fewer nodes in the aoss-sedion. In a pradicd simulation, the output planes could be
placeal on the waveguide terminations, where the dominant mode anplitudes can be obtained diredly from the ABC's.

For the previous results, a band-limited (modulated Gaussian) excitation was used. An impulse excitation (still with the
spatial distribution o the dominant mode) could also be used. The only disadvantage is that energy is introduced at the
waveguide autoff frequency, causing aringing effed which does not decay. The magnitude of the dominant mode & the
input port is shown for the two casesin Fig. 9. The extradion of frequency domain charaderistics in the second case is more
challenging since the required signal is much small er than the ringing. One possibility isto apply a window function kefore
taking the Fourier transform. The point illustrated here is that the simulation remains perfedly stable with an impulse
excitation, for both multigrid methods tested (A and B) with modal diakoptic ABC's. In pradice, it is better to avoid exciting
the waveguide aitoff and impulse excitation must be avoided altogether when certain elements are present, e.g. one-way
equation ABC's.
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A comparison of the results obtained with different multigrid schemes is gown in Fig. 10. These airrves show the
difference (x0.001) between the multigrid results and the results from the long uniform fine mesh. The result from method B
is much closer to the fine mesh result than method A and, interestingly, at higher frequencies, the stub-loaded coarse mesh is
better than the hybrid nade marse mesh. However, the aror introduced by any of these schemes is likely to be much less
than the other errorsinvolved.

A comparison of the runtimes on a 100MHz HP 735 workstation is given below. 2000 fine mesh timesteps were
performed in all cases. Runs marked with an asterisk gave poor results and are only included to give an indication of the
computational effort. The best solution isto use multigridding to distancethe ABC's. Method A runs in the shortest time but
adlightly better result can be obtained with method B. Multi-mode ABC's are expensive ampared to adding a @arse mesh
region. It should be noted that these figures are very implementation dependant (for example, exeaution speed could be
increased at the expense of an increase in storage requirement), so they should orly be taken as a rough indicaion o the
efficiencies of different meshing schemes.

Mesh ABC Run-time (sec)
uniform fine 30x30x96 dominant mode diakoptics 1228
uniform fine 30x30x13 dominant mode diakoptics 422 *
uniform fine 30x30x13 multi-mode diakoptics, to order 3,2 886 *
uniform fine 30x30x13 multi-mode diakoptics, to order 5,4 16%
method A, 30x30x13fine, 2 15x15x5 coarse dominant mode diakoptics 430*
method A, 30x30x13fine, 2 15x15x5 coarse multi-mode diakoptics, to order 3,2 514
method A, 30x30x13 fine, 2 15«15x20 coarse dominant mode diakoptics 459
method B, 30x30x13fine, 2 15¢15x20 stub-loaded coarse dominant mode diakoptics 582
method B, 30x30x13fine, 2 15x15x20 hybrid coarse dominant mode diakoptics 691

Microstrip Impedance Step

To accurately describe microstrips, areasonable number of nodes must be taken aaoss the width of the metallizaion and
in the height of the substrate. A suitable ABC must be seleded to terminate the microstrip. One-way equation ABC's can be
used, in which the mefficients are based upon the dfedive dieledric constant of the microstrip [18]. In this example, simple
matched boundaries (giving arefledion coefficient of zero) are used. Here, matched boundaries give alequate performance
and some tuning of the mefficients would be required to get a superior performance from one-way equation ABC's. The
side and top boundaries are dso modeled with matched boundaries. These boundaries must be placel sufficiently far from
the microstrip so that they do na disturb its operation. Adding a marse mesh around the microstrip is an efficient method of
increasing the distanceto these boundaries. Excitation of microstrips must be done caefully. One possibility isto excite the
vertica component of the E-field uniformly under the strip and to allow a cetain distancefor the corred field distribution to
establish itself. Here, a omplete plane is excited spatially with the d.c. E-field distribution and temporally with a Gaussian
pulse. The d.c. field distribution is obtained from a 2-dimensional dlice of TLM nodes, excited with a raised cosine voltage
sourceplaced between the ground plane and the strip. To encourage the decay of transients, all metallic surfacesare replaced
with matched boundaries, sincethese will form an equipotential in the steady-state.

The example of an impedance step resulting from a 1:2 change in width is considered here. The dimensions, and details
of the multigrid scheme ae shown in Fig. 11. The results obtained from a uniform fine mesh with a aoss-sedion of 72x48
nodes, and a mesh of 30x12 nodes (the same & that used in the multigrid schemes) are shown in Fig. 12. The S-parameters
were alculated from the strip voltage, and to acount for the different impedances of the input and output ports, a fador

|Zoy + Zg, Was included in the S21 calculation. The large fine mesh result agrees well with independent results [23]. The
proximity of the ABC'sin the small fine mesh causes a significant distortion to the results. Multigrid (method A and method
B with both stub-loaded and hybrid nodes) and gaded mesh (hybrid node) schemes are cmpared in Fig. 13. The graded
mesh has the same cél dimensions in the aoss-sedion as the multigrid schemes and the same longitudinal dimensions as
the fine mesh. The result from the graded mesh isidenticd to the uniform fine mesh. The 51x30 uniform fine mesh acually
gives dightly better agreement than multigrid method A. However, al multigrid schemes have half as many nodes in the
longitudinal direction in the @arse mesh. Of the multigrid schemes, method B with the hybrid node gives the best
agreament. It should be noted that there ae till errors present in the simulation, in that the aurves sould be much flatter in
the frequency range. In summary, the graded mesh gives the most acairate result but multigrid method A runs the fastest.
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Conclusions

Multigrid techniques provide an effedive means of reducing the mesh resolution away from discortinuities. For the

examples considered, method B gives better results than method A. However, for certain classes of problems, method A can
give results more quickly without a significant reduction in acaracy. Graded meshes can be more acarate but require
greder computer resources.
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