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Abstract

The application of graded mesh and multigrid techniques to the modeling of microwave components in 3-dimensions
with the TLM method are discussed. Comparisons are made for graded mesh and multigrid interfaces in a waveguide, for a
non-touching axial strip placed in a waveguide, and for a microstrip impedance step. The issues of appropriate excitation and
absorbing boundary conditions are addressed. It is shown that multigrid techniques provide an effective means of reducing
the mesh resolution away from discontinuities.

Introduction

The transmission-line matrix (TLM) method of numerical electromagnetic analysis with the symmetrical condensed
node (SCN) [1] is well established. To increase the flexibility in which a problem can be meshed, two main techniques have
been proposed: graded mesh and multigrid mesh. In this paper, graded and multigrid techniques will be applied to simple
waveguide and microstrip examples, and the relative efficiency and accuracy will be compared.

Graded Mesh

A graded mesh is defined by the cell dimensions along each of the coordinate axes. A feature of graded meshes is that
fine mesh regions cannot be completely isolated from the rest of the mesh. In the original approach, the link-line impedances
were kept constant and stubs were added at the nodes (the stub-loaded node). However, if the nodes are far from being cubic,
this imposes an unreasonable limit on the timestep. The hybrid node [2] offers a more favorable limit on the timestep and
also has superior dispersion characteristics.

Multigrid Schemes

Multigrid techniques allow connection between two disjoint meshes. These meshes can be uniform (with cubic or cuboid
nodes) or they can be graded. At least three multigrid schemes have been proposed and these will be referred to as methods
A, B and C in this paper.

In method A, the average field is maintained across the fine/coarse mesh interface (this is equivalent to conserving
charge) and the coarse→fine and fine→coarse conversions are dealt with separately [3]. The coarse and fine mesh timesteps
can be equal but it is more useful to run the fine mesh with a smaller timestep. For example, if both meshes are uniform and
cubic, the standard 12-port node can be used for both meshes and each mesh can be run with the maximum timestep of ∆l/
2c. In situations where the fine and coarse mesh timesteps are not equal, it is essential that the calculation is ordered such
that an axial TEM wave will propagate perfectly. The standard 12-port node is the most efficient SCN formulation and it is
also the most accurate for axial propagation. If a node is used in which the link-line impedance can vary over the interface,
then appropriate reflection and transmission coefficients may need to be applied before the conversion takes place [4]. For
the hybrid node, this must be done if the ratio of the timestep and the normal node dimension are not the same in both the
fine and coarse meshes. The main disadvantage of method A is that there is a loss of energy in the fine→coarse conversion.

In method B, the fine/coarse mesh interface is implemented as an electrical connection [5]. Energy is conserved in the
conversion procedure but it does require that both fine and coarse meshes are run with the same timestep. This means that
the standard 12-port node cannot be used for the coarse mesh (e.g. stub-loaded or hybrid nodes must be used), resulting in
longer run-times and a higher memory requirement. The fine→coarse conversion is identical to that in method A. For the
coarse→fine conversion, for the case when the incident fine mesh pulses are not equal, the extra degrees of freedom needed



to enforce both charge and energy conservation, are accommodated by modifying the reflected fine mesh pulses. There is a
choice in whether to connect the fine mesh link-lines by row first or by column first, although in practice there appears to be
lit tle difference between the two.

In method C, the interface is implemented by fitting a two-dimensional spline to the pulses incident upon the interface
and then calculating the transmitted pulses by interpolation [6]. This method allows greater flexibil ity in both spatial and
temporal discretization, for example, a non-integer number of link-lines from the fine mesh can be connected to a non-
integer number of link-lines from the coarse mesh. However, the procedure does not enforce conservation of energy and, in
contrast to method A, there can be a gain of energy, as well as a loss. There is also the problem of trying to fit a spline in the
presence of spurious modes with a high spatial frequency. Such modes can be predicted theoretically [7] and, in practice, are
often observed close to excitation points. Spurious modes do not present a problem to methods A and B, and since these
methods usually provide adequate options for meshing, they wil l be concentrated on in this paper.

Meshing Methodology

Both graded mesh and multigrid methods have been used as mesh refinement techniques, so that a uniform fine mesh
does not have to be used throughout the entire problem space. However, for certain discontinuities, mesh refinement may not
give a significant improvement. Normally, TLM is expected to be second order accurate but in the presence of, for example,
a knife-edge discontinuity, the accuracy is reduced to first order [8,9]. When such discontinuities are present, the only
practical solution is to make use of local mesh modification techniques. These techniques can be based on analytical
formulations [10], or on correction factors obtained from an optimization procedure [11]. Special nodes are also available
for wires and slots [12,13], where the features are much smaller than the cell size.

Mesh grading can be used to fit the mesh to the exact physical dimensions of the structure under study. However, since
the cell dimensions must be constant along each of the axes, this means that unless the features of the structure are aligned,
then small cells must be introduced. This will have a detrimental affect on the timestep. Alternatively, the size of cells
adjacent to short or open-circuit boundaries can be varied continuously by altering the link-line impedance [14]. For the
SCN, the arm length can be reduced to one half of the standard value (the presence of the side arms means that the length
cannot be reduced below this), or the length can be increased arbitrarily. This procedure works well for normal incidence.

The most appropriate use of multigrid techniques is to reduce the resolution away from discontinuities. For example, by
increasing the distance to absorbing boundary conditions (ABC’s), the effect of higher order modes is reduced and better
absorption is obtained. Multigridding can also be used to connect disjoint graded meshes for structures with features which
are not aligned.

Interface Between Two Meshes in a Waveguide

Following the example of Wlodarczyk [5], the accuracy of multigrid schemes can be assessed by calculating the S-
parameters of the interface in a section of waveguide. The ends of the waveguides can be terminated with modal diakoptic
boundaries [15,16]. For a uniform mesh, the reflection from these ABC’s is close to the limit of numerical precision (-120dB
single precision, -300dB double precision) and so they will not distort the results. There are no resonance elements present,
so the simulation wil l be short and the discrete Green’s function does not need to be truncated. To avoid problems with
sampling the field at a single point in meshes of different resolution, a modal decomposition is performed over the cross-
section to extract the mode amplitude.

Fig. 1 shows the reflection and transmission coefficients for multigrid interfaces between a 16x8 coarse mesh and a
32x16 fine mesh, for methodsA andB. The nodes are cubic in all cases. Two cases are considered for methodB: stub-loaded
coarse mesh and hybrid node coarse mesh. The standard 12-port node is used for all other meshes. For method B, the
reflection coefficients are the same for both coarse→fine and fine→coarse conversions. Also, the transmission coeff icients
are symmetrical about unity. Smaller reflections are obtained with the hybrid node coarse mesh. For method A, the
fine→coarse conversion works better than the coarse→fine conversion. The reflection coefficient for the fine→coarse
conversion is better than for method B. Both transmission coefficients are much less frequency dispersive, particularly the
fine→coarse conversion. This means that if it is only the fine→coarse conversion which is of interest (e.g. the region of
interest is contained in the fine mesh and the coarse mesh is only used to increase the distance to ABC’s), method A can give
superior results. However, if the system contains resonant elements, and if the oscil lation occurs across the interface, then
the loss of energy will be a problem and method B wil l be more appropriate.

The magnitudes of the reflection and transmission coeff icients for a multigrid interface are similar to those observed with
a straightforward graded mesh interface. Fig. 2 shows curves for an interface between cubic nodes and nodes with normal
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Fig. 1 – Reflection and transmission coefficients for multigrid interface between 16x8 coarse mesh and 32x16 fine mesh
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Fig. 2 – Reflection and transmission coefficients for hybrid node graded mesh, 16x8 node cross-section
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Fig. 3 – Reflection and transmission coefficients for multigrid interface between 32x16 coarse mesh and 64x32 fine mesh
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dimensions of ∆l/2 and 3∆l/4, modeled with the hybrid node. The curves are functions only of the initial and final node
dimensions; the same results are obtained if the node dimensions are changed in one step or if they are changed gradually.

The performance of multigrid interfaces improves as the mesh resolution is increased. Fig. 3 is the same as Fig. 1 except
that both coarse and fine meshes are doubled in resolution. The trends observed are the same as in the previous case.

Non-touching Axial Strip in a Waveguide

A simple three-dimensional discontinuity consisting of a non-touching axial strip placed in a waveguide, as shown in
Fig. 4, has been modeled. The dimensions of the strip are such that for ∆l=0.1185mm, the strip is exactly 3x16 nodes and the
waveguide cross-section is 60x30 nodes. Symmetry can be exploited about the strip. The size of this strip presents a
challenge to the modeler: if the strip was very small compared to the mesh size, a special node (similar to a wire node)
would have to be used; if the strip was much larger, then a straightforward TLM description would probably be sufficient.
Here, an edge correction is applied around the strip to reduce the coarseness error [11]. The correction factors were obtained
from a systematic optimization for a single finned waveguide, and if the correct result is obtained for this structure, it will
give a measure of the generality of the method and of the correction factors.

To allow comparison between different meshing schemes, the strip is described in a uniform fine mesh 13 nodes in
length, as shown in Fig. 5. The output planes are taken three nodes from the edge of the strip (the edge correction extends
over nodes 5 and 9). Since the output planes are close to the strip, a modal decomposition must be performed over the cross-
section to extract the dominant mode ampli tude. This is done from the Hz field component. In the general case, where it is
necessary to distinguish between TE and TM modes of the same order, it is more convenient to work with Hz and Ez rather
than with the voltage pulses. This is in contrast to the usual implementation of modal diakoptic ABC’s, which work directly
on the voltage pulses [16]. For the excitation, Ey is introduced with the spatial distribution of the dominant mode, on the
same plane as the first port output. Special care must be taken when calculating the field at the same point as the excitation
since the usual condition, that the incident charge before scattering is the same as the reflected charge, does not hold. In this
case, Hz must be calculated from both incident and reflected voltage pulses. The pulses needed to produce the required
excitation waveform are obtained from a reference structure containing hard voltage sources [17]. This reference structure is
only a single cell in length and is terminated with dominant mode diakoptic ABC’s.

Given that the strip is adequately described in the fine mesh, the main decision to be made is on the waveguide
terminations. Some of the available options are shown in Fig. 6. The waveguide can be terminated close to the strip, which
requires an ABC that will adequately absorb higher order modes. The termination can be moved a short distance away, to
reduce the number of modes to be absorbed, or, the termination can be moved far away, so that only the dominant mode
needs to be considered. Single mode diakoptic ABC’s and one-way equation ABC’s [18] can be used in the last case. Multi -
mode diakoptic ABC’s can be used in the other cases, provided the modes are known in advance. The Berenger perfectly
matched layer (PML) is also a possibil ity [19,20], although the PML must be of a certain thickness, which increases the
computation effort. Multigridding provides an eff icient way to distance ABC’s by adding coarse mesh regions.

The results obtained with a uniform fine mesh (30x30x96 nodes) and dominant mode diakoptic ABC’s are shown in Fig.
7, along with independent results [21,22]. There is very good agreement considering the small number of nodes describing
the strip. The effect of adding a coarse mesh to the original 13 node fine mesh is shown in Fig. 8, for lengths of 20 and 5
coarse mesh nodes, and for no coarse mesh, again for dominant mode ABC’s. The 20 node coarse mesh gives results almost
identical to the uniform fine mesh but with much reduced computing resources. To provide good terminations with multi -
mode ABC’s, modes up to 5,4 must be considered with no coarse mesh, and modes up to 3,2 with a 5 node coarse mesh.
Placing modal diakoptic boundaries in a coarse mesh has the advantage that the modal decomposition can be performed
more efficiently because there are fewer nodes in the cross-section. In a practical simulation, the output planes could be
placed on the waveguide terminations, where the dominant mode amplitudes can be obtained directly from the ABC’s.

For the previous results, a band-limited (modulated Gaussian) excitation was used. An impulse excitation (still with the
spatial distribution of the dominant mode) could also be used. The only disadvantage is that energy is introduced at the
waveguide cutoff frequency, causing a ringing effect which does not decay. The magnitude of the dominant mode at the
input port is shown for the two cases in Fig. 9. The extraction of frequency domain characteristics in the second case is more
challenging since the required signal is much smaller than the ringing. One possibili ty is to apply a window function before
taking the Fourier transform. The point ill ustrated here is that the simulation remains perfectly stable with an impulse
excitation, for both multigrid methods tested (A and B) with modal diakoptic ABC’s. In practice, it is better to avoid exciting
the waveguide cutoff and impulse excitation must be avoided altogether when certain elements are present, e.g. one-way
equation ABC’s.
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A comparison of the results obtained with different multigrid schemes is shown in Fig. 10. These curves show the
difference (x0.001) between the multigrid results and the results from the long uniform fine mesh. The result from method B
is much closer to the fine mesh result than method A and, interestingly, at higher frequencies, the stub-loaded coarse mesh is
better than the hybrid node coarse mesh. However, the error introduced by any of these schemes is likely to be much less
than the other errors involved.

A comparison of the run-times on a 100MHz HP 735 workstation is given below. 2000 fine mesh timesteps were
performed in all cases. Runs marked with an asterisk gave poor results and are only included to give an indication of the
computational effort. The best solution is to use multigridding to distance the ABC’s. Method A runs in the shortest time but
a slightly better result can be obtained with method B. Multi -mode ABC’s are expensive compared to adding a coarse mesh
region. It should be noted that these figures are very implementation dependant (for example, execution speed could be
increased at the expense of an increase in storage requirement), so they should only be taken as a rough indication of the
efficiencies of different meshing schemes.

Microstrip Impedance Step

To accurately describe microstrips, a reasonable number of nodes must be taken across the width of the metallization and
in the height of the substrate. A suitable ABC must be selected to terminate the microstrip. One-way equation ABC’s can be
used, in which the coefficients are based upon the effective dielectric constant of the microstrip [18]. In this example, simple
matched boundaries (giving a reflection coefficient of zero) are used. Here, matched boundaries give adequate performance
and some tuning of the coeff icients would be required to get a superior performance from one-way equation ABC’s. The
side and top boundaries are also modeled with matched boundaries. These boundaries must be placed suff iciently far from
the microstrip so that they do not disturb its operation. Adding a coarse mesh around the microstrip is an efficient method of
increasing the distance to these boundaries. Excitation of microstrips must be done carefully. One possibilit y is to excite the
vertical component of the E-field uniformly under the strip and to allow a certain distance for the correct field distribution to
establish itself. Here, a complete plane is excited spatially with the d.c. E-field distribution and temporally with a Gaussian
pulse. The d.c. field distribution is obtained from a 2-dimensional slice of TLM nodes, excited with a raised cosine voltage
source placed between the ground plane and the strip. To encourage the decay of transients, all metallic surfaces are replaced
with matched boundaries, since these wil l form an equipotential in the steady-state.

The example of an impedance step resulting from a 1:2 change in width is considered here. The dimensions, and details
of the multigrid scheme are shown in Fig. 11. The results obtained from a uniform fine mesh with a cross-section of 72x48
nodes, and a mesh of 30x12 nodes (the same as that used in the multigrid schemes) are shown in Fig. 12. The S-parameters
were calculated from the strip voltage, and to account for the different impedances of the input and output ports, a factor

 was included in the S21 calculation. The large fine mesh result agrees well with independent results [23]. The
proximity of the ABC’s in the small fine mesh causes a significant distortion to the results. Multigrid (method A and method
B with both stub-loaded and hybrid nodes) and graded mesh (hybrid node) schemes are compared in Fig. 13. The graded
mesh has the same cell dimensions in the cross-section as the multigrid schemes and the same longitudinal dimensions as
the fine mesh. The result from the graded mesh is identical to the uniform fine mesh. The 51x30 uniform fine mesh actually
gives slightly better agreement than multigrid method A. However, all multigrid schemes have half as many nodes in the
longitudinal direction in the coarse mesh. Of the multigrid schemes, method B with the hybrid node gives the best
agreement. It should be noted that there are still errors present in the simulation, in that the curves should be much flatter in
the frequency range. In summary, the graded mesh gives the most accurate result but multigrid method A runs the fastest.

Mesh ABC Run-time (sec.)

uniform fine 30x30x96 dominant mode diakoptics 1228

uniform fine 30x30x13 dominant mode diakoptics 422 *

uniform fine 30x30x13 multi-mode diakoptics, to order 3,2 886 *

uniform fine 30x30x13 multi-mode diakoptics, to order 5,4 1694

method A, 30x30x13 fine, 2 15x15x5 coarse dominant mode diakoptics 430 *

method A, 30x30x13 fine, 2 15x15x5 coarse multi-mode diakoptics, to order 3,2 514

method A, 30x30x13 fine, 2 15x15x20 coarse dominant mode diakoptics 459

method B, 30x30x13 fine, 2 15x15x20 stub-loaded coarse dominant mode diakoptics 582

method B, 30x30x13 fine, 2 15x15x20 hybrid coarse dominant mode diakoptics 691

Z01 Z02÷
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Fig. 10 – Non-touching strip: difference in S-parameters obtained with different multigrid schemes
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Conclusions

Multigrid techniques provide an effective means of reducing the mesh resolution away from discontinuities. For the
examples considered, method B gives better results than method A. However, for certain classes of problems, method A can
give results more quickly without a significant reduction in accuracy. Graded meshes can be more accurate but require
greater computer resources.
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